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Abstract 

To solve problems of poor security guarantee and insufficient training efficiency in the conventional reinforcement 
learning methods for decision-making, this study proposes a hybrid framework to combine deep reinforcement 
learning with rule-based decision-making methods. A risk assessment model for lane-change maneuvers consid-
ering uncertain predictions of surrounding vehicles is established as a safety filter to improve learning efficiency 
while correcting dangerous actions for safety enhancement. On this basis, a Risk-fused DDQN is constructed utilizing 
the model-based risk assessment and supervision mechanism. The proposed reinforcement learning algorithm sets 
up a separate experience buffer for dangerous trials and punishes such actions, which is shown to improve the sam-
pling efficiency and training outcomes. Compared with conventional DDQN methods, the proposed algorithm 
improves the convergence value of cumulated reward by 7.6% and 2.2% in the two constructed scenarios in the sim-
ulation study and reduces the number of training episodes by 52.2% and 66.8% respectively. The success rate of lane 
change is improved by 57.3% while the time headway is increased at least by 16.5% in real vehicle tests, which con-
firms the higher training efficiency, scenario adaptability, and security of the proposed Risk-fused DDQN.
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1  Introduction
Autonomous vehicle, which has great potential to reduce 
traffic accidents and jams, is a future trend in automo-
biles [1]. Decision-making is a central component of an 
autonomous driving system since the decision-making 
module determines the behavior of the vehicle. More 
specifically, it outputs specific target points, target 
poses, vehicle speed and other boundary constraints 
based on behavioral patterns, which are later utilized in 
the planning module to generate trajectories [2, 3]. The 
lane change maneuver is an important part of behavio-
ral decision-making [4, 5]. The current widely adopted 
technical routes for lane change decision-making can be 

divided into rule-based approaches and learning-based 
approaches [6, 7].

1.1 � Rule‑Based Decision‑making
The rule-based lane change decision-making system deter-
mines the behavior of vehicles based on an established rule 
base. The rule-based method has the following advantages: 
simple to apply, highly interpretable, safe and stable [8].

Nilsson et al. [9] made simple and clear logical rules to 
recognize the behavioral intentions of surrounding vehi-
cles by observing the lateral and longitudinal movement 
law of traffic participants, and accordingly proposed an 
appropriate scheme to be applied to highway lane change 
decision-making [10]. Constantin et al. [11] constructed 
a decision tree by enumerating all the possible resulting 
navigation decisions associated with each obstacle. The 
vehicle will consider the optimal decision behavior for 
each lane from left to right each time it approaches an 
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obstacle, but the decision tree-based method faces the 
problem of difficult state classification for complex work-
ing conditions.

Brechtel et  al. [12] combined dynamic Bayesian net-
work based continuous space prediction with discrete-
space Markov Decision Process (discrete-space MDP), 
so that the decision-making system can cope with the 
uncertainty in the evolution of the lane change state. Ref. 
[13] estimated the distribution of potential driving inten-
tions of surrounding vehicles based on their historical 
trajectories. They used the Partial Observable Markov 
Decision Process (POMDP) solution framework to take 
the coupling effect between multiple traffic participants 
into account, and verified the effectiveness of the deci-
sion-making algorithm in lane change and intersection 
scenarios. Bahram et al. [14] used game theory to find a 
sequence of actions in the planning time domain to bal-
ance environmental risk and vehicle intent, solving for an 
optimal strategy considering the interaction.

The risk assessment-based decision-making method 
can model and evaluate the risk degree of the driving 
process for autonomous vehicles. The concept of Artifi-
cial Potential Field (APF) in the field of robot path plan-
ning is a risk assessment method that has subsequently 
been widely used in the field of autonomous driving and 
assisted driving [15, 16]. Ref. [17] added the influence of 
driver behavior characteristics, traffic environment and 
motion information on potential energy distribution 
based on the theory of artificial potential energy field, 
and constructed a unified model of “driving risk field” 
for human-vehicle-road closed-loop system with “kinetic 
energy field”, “potential energy field” and “behavior field”. 
However, the model can only describe the risk distribu-
tion at fixed moments, lack judgement of the driving 
intentions of traffic vehicles on structured roads, and 
provide insufficient analysis on how to calculate the colli-
sion risk in the presence of dynamic obstacles.

In summary, the rule-based decision-making method 
has a large number of parameters that need to be trans-
formed using expert experience. In addition, it is difficult 
to consider the dynamic interaction characteristics of 
traffic participants and is not well adapted to traffic envi-
ronments with complex dynamic constraints.

1.2 � Learning‑based Decision‑making
Learning-based decision-making methods, especially 
reinforcement learning (RL), offer better adaptability 
than rule-based decision-making methods. Value-based 
RL methods are widely used in decision-making train-
ing for autonomous vehicles, the simplest and easiest of 
which is the Q-learning method. Ref. [18] used Q-learn-
ing to implement safe lane change decision-making for 
intelligent vehicles in their own built traffic simulation 

environment. Based on the Q-learning algorithm, Ref. 
[19] used Deep Neural Network (DNN) instead of the 
previous Q-table, allowing the algorithm to handle tasks 
in continuous state space for training. In addition, the 
method of experience replay was proposed to break the 
correlation between data, solving the problem of instabil-
ity and divergence in the combination of RL and neural 
networks. It has opened up the research boom of deep 
reinforcement learning (DRL). In follow-up studies, 
improved methods such as prioritized experience replay 
have been proposed to improve the training speed and 
effectiveness of DQN [20]. Wang et  al. [21] used DQN, 
which is combined with the rule-based constraints, to 
investigate decision-making algorithms for intelligent 
vehicles in lane change scenarios. Shi et al. [22] proposed 
a hierarchical structure based on DQN by dividing the 
decision-making and control processes into two related 
processes.

Also, many improved versions have been derived based 
on the original DQN method, such as Double DQN 
(DDQN) [23] which distinguishes the network for select-
ing optimal actions from the network for target value 
prediction, as well as Dueling DQN [24], which divides 
the Q-value into two parts, the state value and the domi-
nance function, for separate calculations, both achieving 
faster and more stable learning. To solve the problem of 
continuous motion control, the DDPG algorithm was 
proposed. Ref. [25] used DDPG to make the intelligent 
vehicle conduct trial-and-error training in the high-fidel-
ity virtual simulation environment, and finally realized 
the safe lane change decision-making of intelligent vehi-
cles in complex traffic flow on structured roads.

DRL algorithms interact with the environment through 
agents and optimize the expected long-term reward. 
This function reflects a high-level goal by giving positive 
rewards or punishment for the direct result of the action. 
Although the resulting decisions may obtain higher 
expected rewards, there is no guarantee of their safety. In 
addition, the reward function may be difficult to design 
in many application scenarios, resulting in a final behav-
ior that is not consistent with the desired goal.

Figure 1  Uncertainty distribution of predicted trajectory
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1.3 � Summary
To sum up, rule-based decision-making methods have 
poor generalization capability due to the high dimension-
ality and strong uncertainty of the autonomous driving 
scenarios, but have the advantages of strong interpreta-
bility and easy traceability to generate stable, reliable and 
predictable results. On the other hand, learning based 
decision-making methods such as RL have strong sce-
nario adaptability but have problems in terms of safety 
and reliability. They are also less efficient in recognizing 
dangerous scenes during the learning process. Which 
leads to prolonging the training time.

To solve the above problems, this study proposes a 
hybrid framework to combine rule-based and learning-
driven approaches. A rule-based prediction uncertainty 
model of surrounding vehicles is constructed as a safety 
assessment mechanism. Decision outputs of the DRL are 
filtered for both network training and deployment. On 
this basis, this study further constructed a Risk-fused 
DDQN approach with a risk assessment mechanism. 
Simulation and real vehicle test results in different lane 
change scenarios showed that the proposed Risk-fused 
DDQN approach has higher convergence reward values 
and shows better safety.

The main contributions of this study are as follows:

1)	 A risk-fused DDQN framework is developed to com-
bine the advantages of both rule-based and learning-
driven approaches, which improves the safety perfor-
mance of DRL.

2)	 Based on risk assessment with trajectory uncertainty, 
a safe filter mechanism is constructed to identify 
dangerous actions during the training process.

3)	 By replacing the dangerous actions with a rule-based 
safe action, the exploration of DRL agents is pro-
longed to obtain a better driving policy.

The paper is constructed as follows: Section  2 intro-
duces a safety judgement mechanism based on behavio-
ral decision-making risk assessment and a fused DDQN 
training algorithm Risk-fused DDQN that incorporates 
this safety judgement mechanism. Section  3 designs a 
set of simulation training environments for autonomous 
driving decision-making systems on structured roads. 
Section  4 conducts comparison simulations and experi-
mental tests. Section  5 summarizes the conclusion and 
outlook of the study.

2 � Hybrid Training Framework Considering 
Behavioral Risk Assessment

2.1 � Trajectory Prediction and Collision Evaluation
To enhance the ability of DNN to recognize dangerous 
actions, this study introduces a lane change trajectory 
risk assessment algorithm that considers the predicted 
trajectory of surrounding vehicles.

Firstly, the predicted lane change behavioral trajec-
tory TLC of surrounding vehicles can be obtained from 
Ref. [26], where the vehicle speed is assumed to be con-
stant. In addition, considering that the vehicle has iner-
tia and the speed as well as the yaw rate remain constant 
over a short period of time, the kinematic model can be 
expressed as

where v0, φ0, ω0 represent the initial vehicle speed, the 
initial heading angle and the initial yaw rate at the cur-
rent moment, respectively. According to the initial posi-
tion and the initial heading (x0, y0, φ0) of the vehicle at 
the current moment, the predicted kinematic trajectory 
Tkin is then obtained according to Eq. (1). A cubic curve 
w(t) = a3t3 + a2t2 + a1t + a0 is adopted to fuse the above 
two trajectories to obtain the fusion predicted trajectory 
Tfu as expressed by Eq. (2).

The noise of the position and heading information of 
other vehicles, i.e. x, y and φ satisfy the Gaussian distribu-
tion 

∑

x,y,ϕ ∼ N (0, σ 2
x,y,ϕ) , which represents the covari-

ance of this 3D Gaussian distribution [27]. On this basis, 
the spread of uncertainty along this trajectory is derived 
and the uncertainty distribution of the predicted trajectory 
with 90% confidence ellipse is shown in Figure 1.

Every traffic participant around is traversed. The fusion 
predicted trajectory Tfu with the uncertainty of the jth 

(1)
{

vx(t) = v0 cos(ω0t + ϕ0),

vy(t) = v0 sin(ω0t + ϕ0),

(2)Tfu(t) = w(t) · TLC(t)+ (1− w(t)) · Tkin(t).

Figure 2  Predicted trajectory and collision probabilities
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surrounding vehicle is taken with the planning trajectory 
Tp of the ego-vehicle for collision risk calculation. The col-
lision probability at moment i represented by Eq. (3) is then 
calculated by sampling the trajectory with uncertainty of 
other vehicles N times with a Gaussian distribution.

where Sego represents the pose rectangular box of the ego-
vehicle planning trajectory at moment i, Sother represents 
the pose rectangular box of the surrounding vehicles 
obtained at the nth sampling, Ic represents the collision 
detection function. If there is an intersection between 
Sego and Sother, then a single count is performed, as shown 
by the Eq. (4):

The above collision probability calculation is looped for 
all discrete points along the predicted trajectory to pre-
dict collision probability. Figure 2(a) shows a top view of 
the actual traffic scenario, which contains the planned 
trajectory of the ego-vehicle, the predicted trajectory of 
the other-vehicle, and its uncertainty distribution. Fig-
ure 2(b) shows the collision probability at each moment 
in the prediction horizon.

2.2 � Risk Assessment for DRL Decision‑making
Current DRL methods face two major problems. Firstly, 
they are too greedy in pursuing higher self-rewards and 
thus could fall into local optimal policy. The trained 
agents are easy to lead to possible collisions and poor 
safety in lane change decision-making. Secondly, the 
training efficiency needs to be improved. Free explora-
tion of action space during training process generates fre-
quent collisions, which causes frequent resetting of the 
simulation environment and limits the exploration space 
of DRL agent.

Therefore, a safe assessment mechanism is established 
to judge the safety of behavioral decisions by considering 
collision probability of lane change trajectories. Assess-
ment indices such as the number of high-risk trajectory 
points, the peak collision probability and the recipro-
cal of the peak time are considered. The proposed safe 
assessment mechanism is then used to judge the safety of 
the decisions made by the agent and correct dangerous 
actions during the training process to increase the aver-
age episode length.

(3)Pij(Tp,Tfu(t)) =
1

N

N
∑

n=1

Ic(Sego, Sother),

(4)Ic(Sego, Sother) =

{

0 Sego ∩ Sother = 0,

1 Sego ∩ Sother �= 0.

A trajectory point may interfere with the predicted 
trajectories of multiple vehicles. After obtaining the 
collision probability pij between the ego-vehicle and 
the jth surrounding vehicle at the moment i, the colli-
sion probabilities at the moment i are sorted to obtain 
an ordered sequence porderedij  ranked from the largest 
to the smallest value since the high collision risk point 
with a higher collision probability was given priority. 
The collision probabilities on the porderedij  are weighted 
and summed according to their ranking. Then the inte-
grated collision probability Pi ∈ [0, 1] at the moment i 
can be expressed as,

Based on this, the following indicators are extracted 
from the trajectories with collision probabilities at each 
moment for safety assessment:

1)	 The number of high-risk trajectory points CHR: The 
collision risk value P0 at each point of the ego-vehicle 
lane change decision-making trajectory is traversed. 
The index is increased if P0 is greater than a certain 
threshold.

2)	 The peak collision probability Cp: Cp can quantify 
how dangerous the trajectory is and characterize its 
safety. Cp can be expressed as

where I represents the number of trajectory points on 
the predicted trajectory, and Pi represents collision 
probability at each moment.

3)	 The reciprocal of the time-to-peak CTTP index: 
The safety of trajectories with the same peak colli-
sion probability varies due to different time-to-peak 
(TTP) index. The peak collision probability char-
acterizes the potential collision risk. The longer the 
time-to-peak index, the greater safety margin is 
reserved for the autonomous vehicle to re-plan its 
action to cope with dangerous scenarios. The indica-
tor can be expressed as

The three safety assessment indicators mentioned 
above are normalized. The number of high-risk trajec-
tory points CHR, the peak integrated collision probabil-
ity Cp, and the reciprocal of the time-to-peak CTTP are 
normalized to the range [0, 20], [0, 1], [0.05, 20] respec-
tively. The normalized indicators are then weighted 

(5)Pi =
∑

j

1

j
porderedij .

(6)CP = min{max(Pi), 1}, i = 1 ∼ I ,

(7)CTTP =
1

TTP
.
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and summed to obtain the integrated lane change risk 
which can be expressed as

where, wHR, wP, wTTP are the weight coefficients of the 
corresponding indicators.

2.3 � Risk Assessment for DRL Decision‑making
The trade-off between exploration and data utiliza-
tion efficiency is the key feature of reinforcement learn-
ing. In order to get a higher reward, the agent must try 
behaviors that have not been tried before. However, free 
exploration can be quite costly, especially when learn-
ing on physical platforms, such as autonomous vehicles 
or other robotic platforms. Such problems also exist in 
simulation environments. For example, when training in 
a highway lane change scenario, using unguided explora-
tion may often result in collisions or near-collision situ-
ations, which resets the simulation and thus slows down 
the learning. A detailed investigation of various security 
mechanisms adopted in the reinforcement learning pro-
cess can be found in Ref. [28].

This study introduces a security screening mechanism 
that considers predicted trajectories of surrounding 
vehicles by integrating the previously proposed colli-
sion probability and security judgement mechanism for 
lane-change scenarios based on the DDQN. The security 
screening mechanism is applied in both the model train-
ing and validation stages to improve the safety of behav-
ioral decision-making. When the risk factor as calculated 
by Eq. (8) exceeds the threshold, corresponding actions 
are considered dangerous, and are then corrected to 
avoid frequent collisions.

In this study, the action set of an autonomous vehicle 
is defined as: left lane change, right lane change, increase 
target speed, decrease target speed, and IDLE. A correc-
tion mechanism is constructed for dangerous actions in 
longitudinal and lateral directions with pseudo-code as 
shown in Algorithm 1. The input to the action correction 
function is decision 1 of action a which is judged to be 
dangerous by risk assessment. The function corrects the 
action according to the logic proposed by Algorithm  1 
and returns the corrected acorrected.

(8)risk = wHR
CHR

20
+ wpCP + wTTP

CTTP − 0.05

20− 0.05
,

Algorithm 1  DDQN training algorithm based on risk assessment 
and behavioral decision correction

The pseudo-code for DDQN training based on risk 
assessment and behavioral decision correction is 
shown in Algorithm  1. The risk assessment mechanism 
described in Sections  2.1 and 2.2 are adopted to deter-
mine the risk of action a, and the correction mechanism 
for dangerous actions is shown in Algorithm  1. Other 
main processes such as Experience Replay, Target Value 
Calculation and Network Update are consistent with the 
classical DDQN model.

Most of the unreasonable and dangerous actions made 
by the agent can be corrected during the training process 



Page 6 of 16Xiong et al. Chinese Journal of Mechanical Engineering           (2025) 38:30 

based on the above safety evaluation and action correc-
tion mechanism. Therefore, the agent can obtain a larger 
average episode length during the training and thus 
obtain better training results.

Although the action correction based on risk assess-
ment allows the agent to avoid most of the dangerous 
behavioral decisions, there is no guarantee that a safe 
action can be chosen in all working conditions. Mean-
while, the agent relies heavily on the protection of the 
risk assessment mechanism, increasing the computa-
tional burden on the system. In order to get better deci-
sion-making results and significantly reduce the reliance 
on the rule-based protection mechanism, it is necessary 
to set penalty feedback and experience sampling on the 
sequence of state actions corrected by the introduced 
rule, so that the policy network can achieve better results.

2.4 � Fusion Training Based on Risk Assessment
This section proposes a rule-based fusion DRL model for 
lane change scenarios, namely Risk-fused DDQN.

Based on traditional DRL method for decision-mak-
ing, trajectory prediction and uncertainty representa-
tion of surrounding traffic participants constructed in 
Section 2.1 are adopted in the risk assessment. The out-
put actions of the model in training and validation pro-
cess are corrected by the risk assessment mechanism as 
described in Section 2.3. Apart from that, training of the 

model is supervised by storing the sequence of dangerous 
state actions for fixed-proportion sampling and special 
punishment as detailed below.

As shown in Figure  3, the proposed Risk-fused 
DDQN is realized on the basis of DDQN algorithm and 
differs from DDQN mainly in four stages of reinforce-
ment learning algorithm: action selection, experience 
storage, trajectory sampling, and target value calcula-
tion, which will be described as follows. The pseudo-
code of the Risk-fused DDQN training is shown in 
Algorithm 2.

Firstly, in the action selection stage, the main value 
network of the agent obtains the environment state 
s at the current moment during the interaction with 
the environment and selects the decision of action a 
accordingly. Risk-fused DDQN then judges the safety 
of the action a through the security judgement mech-
anism for behavioral decision-making based on risk 
assessment. If the action is judged to be dangerous, it 
will be corrected to a safe action acoorected by the dan-
gerous action correction mechanism proposed in Sec-
tion  2.3, and then the safe action will be executed by 
the agent. If the action is judged to be safe, in contrast, 
no correction will be made and the agent can continue 
to execute the original action.

Algorithm 2  Risk-fused DDQN training algorithm based 
on risk-assessment supervision

Figure 3  Fusion training based on risk assessment
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Secondly, in the experience storage stage, Risk-fused 
DDQN sets two experience buffers for storing the safe 
and dangerous action experience separately. The state 
s′ at the next moment can be obtained after the agent 
executes the action. If the executed action is a corrected 
action, it means that the state s′ has no relationship with 
the previous dangerous action a, and the agent needs 
to be notified original action a is dangerous so that s′ 
does not need to be recorded. Accordingly, the action 
state pair (s, a) is given a fixed penalty rdangerous instead 
of calculating rewards based on changes in motion states 
between adjacent moments, and then the state transition 
information (s, a, rdangerous, *) is stored in the dangerous 
experience buffer. If the executed action is an uncor-
rected action, the reward r will be calculated normally 
according to the DDQN process, and the state transition 
information (s, a, rdangerous, s′) will be stored in the safe 
experience buffer.

Thirdly, in the trajectory sampling stage, when a suffi-
cient amount of data has been collected in the safe and 
dangerous experience buffer, experience replay is per-
formed by fixed proportion sampling. Suppose the length 
of the trajectory to be sampled is Nt and the sampling 
proportion of the safe experience is k, then kNt and (1-k) 
Nt pieces of state transition information are randomly 
selected from the safe experience buffer and the danger-
ous experience buffer respectively, and the two batches of 
data are combined as the object for calculating the loss 
function in batch processing.

Finally, when applying the Bellman Equation for the 
target value calculation, special treatment is required for 
the data from the dangerous experience buffer. The state-
action value function corresponding to the next state is 
not calculated. On one hand, since the dangerous action 
is not actually executed, there is no way to obtain the 
state at the next moment after it has been executed. On 
the other hand, it can be considered that there is a high 
probability of collision after the action, which is judged 
to be dangerous by the risk assessment mechanism, has 
been taken. In other words, the cumulated reward of the 
dangerous action after the current episode is considered 
to be zero. The treatment of dangerous actions is similar 
to that of collision cases. If the experience data are from 

Figure 4  Four-lane high-speed lane change scenario

Figure 5  Four-lane high-speed lane change scenario
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the safe experience buffer, the target value is calculated 
normally according to the Bellman Equation.

In conclusion, the rule-based risk assessment guides 
the exploration in reinforcement learning. It helps the 
agent to recognize the dangerous action before the actual 
collision occurs and learn to extract more information 
about the surrounding traffic conditions, and such infor-
mation enables the neural network to understand the 
future dangers.

3 � Scenario Construction and Agent Training
3.1 � Vehicle Trajectory Planning and Control
After receiving the target lane information from the 
decision-making module, a quantic polynomial trajectory 
cluster is generated using longitudinal target points on 
the center-line of the target lane, and Lattice-based path 
planning method is performed. The Stanley path tracking 
control is adopted in this study for lateral control.

Since training in reinforcement learning process often 
requires hundreds and thousands of experience acquisi-
tions. In order to reduce the computational effort and 
training time, the planning and control module directly 
specifies the target velocity vtarget in the decision-making 
cycle and tracks vtarget accordingly. A fixed increment 
∆vacc and a fixed increment ∆vdcc are set for the accel-
eration and the deceleration decisions respectively. The 
target speed is the current speed v plus the correspond-
ing speed increment, which is truncated according to the 
road speed limit interval [vmin, vmax]. The acceleration is 
defined as the controlled variable for longitudinal velocity 
control, and a proportional control is implemented with 
coefficient Kp,a to obtain the acceleration a =  Kp,a(vtarget 
-v).

3.2 � Decision‑making Model for Traffic Vehicles
In this study, the longitudinal decision-making of traffic 
participants adopts the Intelligent Driver Model (IDM) 
[29], which sets the target speed v0 for each traffic partic-
ipant vehicle and calculates the corresponding accelera-
tion value according to the relative motion information of 
the front vehicle.

In the lane keeping scenario, the discrete decisions of 
the traffic participants are calculated using the Minimiz-
ing Overall Braking Induced by Lane changes (MOBIL) 
algorithm [30], the core concept of which is a strategy to 
minimize the overall braking caused by lane change. The 
MOBIL algorithm is combined with the "comity coeffi-
cient" to consider the impact of acceleration on following 
vehicles in lane change decision-making on the basis of 
using the acceleration as the utility function.

3.3 � Construction of Random Traffic Flow
In this study, two typical structured road scenarios were 
constructed based on Highway Env simulation platform 
[31]. The first one is a simulated motorway driving sce-
nario in which the autonomous vehicle completes its lane 
change and overtaking. The second one is a simulated 
low-speed urban driving scenario in which the decision-
making model needs to choose an appropriate time to 
complete the lane change, overtaking and merging under 
the interference of the left vehicle. The above two scenar-
ios are shown in Figures 4 and 5 respectively, where the 
green square represents the autonomous vehicle, and the 
blue squares represent other traffic vehicles. The direc-
tion of the traffic flow is from left to right. Parameters for 
the scenario setting are listed in Tables 1 and 2.

4 � Simulation and Experimental Test
4.1 � Simulation Results
In order to verify the effectiveness of the Risk-fused 
DDQN algorithm proposed in this paper, the DQN, the 
DDQN and the Dueling DQN decision-making algo-
rithms, which are based on the value function, as well 
as the Risk-fused DDQN algorithm were applied for 
simulation and comparison in the constructed four-lane 
high-speed scenario and two-lane low-speed lane change 
scenario, respectively.

All of the DRL model comprises one evaluated Q net-
work and one target Q network. Each Q network is a fully 
connected neural network, consisting of four layers: the 
first layer is the input layer with 25 input dimensions, lay-
ers 2 and 3 are the hidden layers with 128 units, and the 
layer 4 is the output layer which outputs the Q-value of 

Table 1  Parameters of four-lane high-speed lane change scenario

Fixed parameters Number of lanes nlane = 4, lane width w = 4 m, total road length l = 1000 m,
Vehicle rectangle length × width = 5 m × 3 m, speed limit vmin = 20 m/s, vmax = 30 m/s

Parameter name Number of traffic
participants n

Set of initial lanes
{lane_indexinit}n

Set of initial speed
{vinit}n

Set of initial longitudinal 
positions {sinit}n

Speed expansion factor 
for IDM control model ξ

Parameter determination nmax = 80 satisfies the uniform distri-
bution of the set {1,2,3,4}, 
obtained by random 
sampling

vinit ~
N(0.8vmax, (0.7vmax)

2)
∆sinit = l/n + ksvinit
sinit = smax + ∆sinit
where ks is the correction 
factor

randomly generated 
within [3.5,4.5]
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each feasible action. The activation function is ReLU and 
the learning rate is set to 0.2.

In addition, short-term behavioral decisions may cause 
behavioral oscillations or overly conservative problems. 
The decision-making task of lane change also needs to 
take a long period of time to execute. Thus, the decision 
interval in the paper is set to 1s, and the control inter-
val is 50 ms. Each model is trained by 10000 episodes and 
tested by 1000 episodes, where the max time of each epi-
sode is set to 35 s.

1)	 Four-lane High-speed Lane Change Scenario:

A total of 10000 episodes are set in this scenario, with a 
maximum episode length of 40 s. If the vehicle completes 
the entire episode, the simulation environment will be 
reset and start the next episode.

The comparison training results of the Risk-fused 
DDQN algorithm and several traditional DQN-based 
RL decision-making algorithms in the four-lane high-
speed lane change scenario are shown in Figures  6 
and 7. The original data has been linearly smoothed. 
As shown in Figure  6(a), the Risk-fused DDQN algo-
rithm has a longer episode length at the beginning of 
the training compared with the traditional reinforce-
ment learning decision-making algorithms. The reason 
is that the dangerous action correction mechanism in 
Section  3.3 works to steer the agent quickly towards 
safe travel in the early stage of training. After 10000 
episodes, the policy networks of all four algorithms 
have largely converged and their episode lengths have 
stabilized at around 32 s, 30 s, 29 s and 28 s respec-
tively. As shown in Figure 6(b) and (c), the supervised 
fusion algorithm based on risk assessment leads the 
other algorithms in both undiscounted and discounted 
rewards. The detailed data comparison at the end of the 
training of 10000 episodes is shown in Table  3. Com-
pared with DQN, DDQN, and dueling DQN, Risk-fused 
DDQN has improved convergence values of all three 
indicators, which are episode length, cumulated reward 
and discounted cumulated reward. In addition, Risk-
fused DDQN reduces the number of episodes required 
for the reward function to reach the same value by 
52.2%.

 

2)	 Two-lane Low-speed Lane Change Scenario:

The comparison training results in the two-lane low-
speed lane change scenario are shown in Figure 8 and 
Figure 9. In terms of episode length, due to the protec-
tion of the behavioral decision correction mechanism Ta
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based on risk assessment, Risk-fused DDQN rose 
rapidly at the beginning of the training. After 9000 
episodes, the episode length of Risk-fused DDQN con-
verged to around 29 s, while DQN, DDQN and Dueling 
DQN converged to around 28 s, 26.5 s and 27 s, respec-
tively. In terms of cumulated reward, Risk-fused DDQN 
led the other algorithms at the beginning of the train-
ing. In terms of discounted cumulated reward, the four 
algorithms showed little difference in performance, 
and the difference in convergence values between the 
four algorithms did not exceed 1%, among which the 
Dueling DQN algorithm still got the highest conver-
gence value. The detailed data comparison at the end of 
the training of 9000 episodes is shown in Table 4. Risk-
fused DDQN algorithm improves convergence values 
of episode length and cumulated reward. Discounted 
cumulated reward of Risk-fused DDQN algorithm is 
essentially the same as the other three algorithms. In 
addition, Risk-fused DDQN reduces the number of 
episodes required for the reward function to reach the 
same value in two constructed scenarios by 66.8%. Fur-
thermore, Table 5 shows the simulation testing results 
in both two scenarios, which shows the proposed Risk-
fused DDQN can significantly improve the safety of 
lane changing decision making with small changes in 
average speeds. 

3) Real-time performance test:  In addition, the real-
time performance is tested in 500 episodes of each sce-
nario, and the comparison results are listed in Table 6. It 
can be seen that DRL method has really great real-time 
performance by generating actions through DNN. Even 
with the addition of a rules-based risk assessment mod-
ule, the computational time of the proposed Risk-fused 
DDQN still meets the current deployment requirements 
of autonomous driving.

4.2 � Real Vehicle Test Results
To further test our approach, we conducted real-vehicle 
tests under the two-lane low-speed lane change scenario 
described in Section  3.3. The real vehicle platform is 
shown in Figure 10, which is configured with a 128-line 
LIDAR and two 16-line complementary blind LIDARs. 

Figure 6  Comparison of the training process of the four-lane 
high-speed lane change scenario

Figure 7  Comparison of the testing process of the four-lane 
high-speed lane change scenario

Table 3  Comparison of Risk-fused DDQN algorithm and traditional reinforcement learning decision-making algorithms in the four-
lane high-speed lane change scenario in simulation training

Bold values indicate the effect of the method proposed in this paper

Comparison 
approach

Convergence 
value of episode 
length

Compared to DQN Convergence 
value of 
cumulated reward

Compared to DQN Convergence 
value of 
discounted 
cumulated reward

Compared to DQN

DQN 28.06 - 25.03 - 4.318 -

DDQN 30.28 7.9% 27.78 11.0% 4.449 3.0%

Dueling DQN 29.28 4.3% 27.30 9.1% 4.445 2.9%

Risk-fused DDQN 32.82 17.0% 29.88 19.4% 4.479 3.7%
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The localization is provided by a high-precision differen-
tial localization device, and the computational unit is an 
industrial control machine with GPU. We extracted the 

parameters of the neural network trained in Python envi-
ronment and reconstructed the network structure using 
OpenCV in C++ environment.

The obstacle feature data detected by LiDAR and the 
state data of the ego vehicle are used as state space to 
input into the reconstructed network structure, and 
then the required decision action for lane change can 
be obtained. The lower-level control algorithm will fol-
low the corresponding reference road according to the 

Figure 8  Comparison of the training process for the two-lane 
low-speed lane change scenario

Figure 9  Comparison of the testing process of the two-lane 
low-speed lane change scenario

Table 4  Comparison of Risk-fused DDQN algorithm and traditional reinforcement learning decision-making training algorithms in the 
two-lane low-speed lane change scenario in simulation training

Bold values indicate the effect of the method proposed in this paper

Comparison 
approach

Convergence 
value of episode 
length

Compared to DQN Convergence value 
of cumulated 
reward

Compared to DQN Convergence value 
of discounted 
cumulated reward

Compared 
to DQN

DQN 28.08 - 24.27 - 4.323 -

DDQN 26.41 -5.4% 24.51 -1.0% 4.289 -0.8%

Dueling DQN 27.01 -3.8% 23.45 -3.4% 4.352 0.7%

Risk-fused DDQN 28.93 3.0% 25.05 3.2% 4.304 -0.4%

Table 5  Comparison of Risk-fused DDQN algorithm and traditional reinforcement learning decision-making algorithms in simulation 
test

Bold values indicate the effect of the method proposed in this paper

Scenario Four-lane high-speed lane change Two-lane low-speed lane change

Comparison 
approach

DQN DDQN Dueling DQN Risk-fused 
DDQN

DQN DDQN Dueling DQN Risk-fused 
DDQN

Average speed 
(m/s)

29.32 29.67 29.58 29.01 10.6 10.0 11.03 11.08

Lane change 
decision times

22983 24248 24176 24638 29166 29370 28791 29167

Collision times 221 61 60 30 49 42 112 7
Collision rate 0.97% 0.25% 0.25% 0.12% 0.17% 0.14% 0.39% 0.02%
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decision action. The two-vehicle scenario was divided 
into two sub-scenarios of the front vehicle at rest and 
the front vehicle at a low speed, and the three-vehicle 

scenario was divided into four sub-scenarios according 
to the speed of the left interfering vehicle and its ini-
tial position relative to the ego-vehicle. There were total 

Table 6  Comparison of the real-time performance

Bold values indicate the effect of the method proposed in this paper

Scenario four-lane high-speed lane change two-lane low-speed lane change

Computation
Time (ms)

Average Max Average Max

DQN 6.32 16.84 6.31 10.01

DDQN 6.38 11.36 6.31 12.66

Dueling DQN 9.10 12.54 9.17 12.39

Risk-fused DDQN 20.69 34.89 20.59 39.14

Figure 10  Real vehicle test platform Figure 11  Road scene from the driver’s view of the autonomous 
vehicle

Table 7  Comparison of driving data for scenarios 3 and 4

Bold values indicate the effect of the method proposed in this paper

Scenario Scenario 3 Scenario 4

Comparison approach DDQN Risk-fused DDQN DDQN Risk-fused DDQN

Whether overtaking succeeded Failed Successful, but failed 
to right lane change

Successful Successful

Average speed during left lane change (m/s) - 4.45 4.46 5.11 (14.6%↑)
Average speed during right lane change (m/s) - - 2.42 2.74 (13.2%↑)
Average speed during the driving (m/s) - 4.80 4.59 5.17 (12.6%↑)
Ego-vehicle speed when changing lane to the left (m/s) - 5.02 5.98 6.49 (8.5%↑)
Distance from the front vehicle when changing lane to the left (m) - 22.21 22.80 28.84 (26.5%↑)
Front vehicle speed when changing lane to the left (m/s) - 2.55 3.10 2.43 (21.6%↓)
Time headway when changing lane to the left (s) - 8.71 3.81 4.44 (16.5%↑)
TTC with the front vehicle when changing lane to the left (s) - 8.99 7.92 7.10 (10.4%↓)
Longitudinal distance from the front vehicle in the target lane when changing 
lane to the left (m)

- 14.2 16.86 22.32 (32.4%↑)

Speed of the front vehicle in the target lane when changing lane to the left (m/s) - 7.88 6.80 6.96 (2.4%↑)
Ego-vehicle speed when changing lane to the right (m/s) - - 6.15 6.95 (13.0%↑)
Longitudinal distance from the rear vehicle in the target lane
when changing lane to the right (m)

- - 11.82 16.94 (43.3%↑)

Time headway of the rear vehicle in the target lane
when changing lane to the right (s)

- - 3.55 5.20 (46.5%↑)
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of six sub-scenarios. In each sub-scenario, Risk-fused 
DDQN and traditional DDQN decision-making models 
were tested once, respectively. The experimental road 
was a four-lane urban structured road. For safety rea-
sons, the middle two lanes of the four-lane road were 
chosen as the experimental lanes in the real vehicle 
tests. The road environment from the driver’s view of 
the ego-vehicle is shown in Figure 11.

The initial distance from the front of the ego-vehicle 
to the rear of the front vehicle was all set to be 50 m. 
Ideally, the ego-vehicle accelerates from standstill and 
gradually approaches the front vehicle, and then at the 
appropriate time, the ego-vehicle is given a left lane 
change command and moves to the left lane to over-
take. Afterwards, the ego-vehicle is given a right lane 
change command and returns to the right lane.

1)	 Two-vehicle scenario:

Only the autonomous vehicle was in the right lane. 
There was a single obstacle in front of the autonomous 
vehicle in the current lane and no vehicle in the left lane.

Scenario 1: The front obstacle is stationary and the 
ego-vehicle changes lane to avoid it.

Scenario 2: The front vehicle moves at a slow speed 
and the ego-vehicle changes lane to overtake and 
merge. Since the traffic participant vehicles were driven 
by human beings, it was difficult to achieve precise con-
trol. The front vehicle was set to slowly accelerate from 
standstill to 10 km/h and then maintained a constant 
speed, and after its front was overtaken by the rear of 
the ego-vehicle, it gradually accelerated to 15 km/h, in 
order to make it more difficult for the ego-vehicle to 
change lane to the right and merge.

Figure 12  Schematic diagram of the scenarios where the left vehicle 
passes quickly

Figure 13  Schematic diagram of the scenarios where the left vehicle 
yields at a low speed

Table 8  Comparison of driving data for scenario 5 and scenario 6

Bold values indicate the effect of the method proposed in this paper

Scenario Scenario 5 Scenario 6

Comparison approach DDQN Risk-fused DDQN DDQN Risk-fused DDQN

Whether overtaking succeeded Successful after losing 
the rear target vehicle

Successful Successful after losing 
the rear target vehicle

Successful

Average speed during left lane change (m/s) 4.76 5.79 (21.6%↑) 3.32 5.60 (68.7%↑)
Average speed during right lane change (m/s) 6.58 7.03 (6.8%↑) - 7.15
Average speed during the driving (m/s) 4.63 5.21 (12.5%↑) 4.00 5.32 (33.0%↑)
Ego-vehicle speed when changing lane to the left (m/s) 2.41 6.09 (152.7%↑) 3.70 5.88 (58.9%↑)
Distance from the front vehicle when changing lane 
to the left (m)

13.48 33.08 (145.4%↑) 17.22 33.73 (95.9%↑)

Front vehicle speed when changing lane to the left (m/s) 1.92 2.54 (32.3%↑) 3.16 2.31 (26.9%↓)
Time headway when changing lane to the left (s) 5.59 5.43 (2.9%↓) 4.65 5.74 (23.4%↑)
TTC with the front vehicle when changing lane to the left (s) 3.91 9.29 (137.6%↑) 31.89 9.45 (70.4%↓)
Longitudinal distance from the rear vehicle in the target lane
when changing lane to the left (m)

- 13.29 - 17.61

Speed of the rear vehicle in the target lane
when changing lane to the left (m/s)

- 5.35 - 2.30

Time headway of the rear vehicle when
changing lane to the left (s)

- 2.49 - 7.66

Ego-vehicle speed when changing lane to the right (m/s) 6.93 6.91 (0.3%↓) - 6.95
Longitudinal distance from the rear vehicle in the target lane
when changing lane to the right (m)

10.77 11.10 (3.1%↑) - 9.94

Time headway of the rear vehicle in the target lane
when changing lane to the right (s)

3.24 3.81 (17.6%↑) - 4.12
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In scenario 1, DDQN failed to change lane. When 
Risk-fused DDQN issued a left lane change command, 
the ego- vehicle speed was 4.39 m/s, the distance from 
the front vehicle was 42.23 m and the headway was 9.6 
s. In this way, the safety margin was large, and the sense 
of crisis for the occupants of the autonomous vehicle 
was very small. When the right lane change command 
was issued, the ego-vehicle speed was 6.36 m/s and the 
distance from the rear vehicle was 6.95 m, which fully 
met the safety requirements.

In scenario 2, Risk-fused DDQN issued a lane change 
command 17.83 m ahead of DDQN.

2)	 Three-vehicle scenario:

In the three-vehicle scenario, the ego-vehicle was ini-
tially in the right lane. There was a slow-moving vehicle 
in front of the ego-vehicle and an interfering vehicle in 
the left lane driving in the same direction.

In the three-vehicle scenario, the left vehicle speed rel-
ative to the ego-vehicle would have a significant impact 
on the lane change decision-making of the ego-vehicle, 
so the scenario was further divided according to how fast 
the left vehicle was driving relative to the ego-vehicle:

Scenarios 3 and 4: The front vehicle drives at a low 
speed and the left vehicle passes quickly. Ideally, the 
autonomous vehicle firstly yields the left vehicle before 
the lane change. As shown in Figure  12, in order to 
check whether the decision-making models would make 
unreasonable lane change decisions at different longitu-
dinal relative distances, it was divided into two scenarios 
according to the initial longitudinal distance between the 
left vehicle and the ego-vehicle. That is, the left vehicle 
was 5 m behind the ego-vehicle and 5 m ahead of the ego-
vehicle, which corresponds to scenario 3 and scenario 4, 
respectively. The front vehicle drove in the same way as 
in scenario 2. The left vehicle was set to rapidly accelerate 
from standstill to 30  km/h and then maintained a con-
stant speed.

Scenario 5 and 6: The front vehicle drives at a low 
speed, and the left vehicle yields at a low speed. Ideally, 
the autonomous vehicle firstly overtakes the left vehicle 
before the lane change. As shown in Figure 13, it is simi-
larly divided into two scenarios according to the relative 
longitudinal distance between the left vehicle and the 
ego-vehicle. That is, the left vehicle was 5 m behind the 
ego-vehicle and 10 m behind the ego-vehicle, which cor-
respond to scenarios 5 and 6, respectively. The front vehi-
cle drove in the same way as in scenario 2. The left vehicle 
was set to slowly accelerate from standstill to 10 km/h 
and then maintained a constant speed. Then the left vehi-
cle accelerated to 15 km/h after the ego-vehicle changed 
lane and drove ahead of it.

In scenarios 3–6, Risk-fused DDQN decision-making 
model also achieved good decision-making results. The 
data comparison is shown in Tables 7 and 8.

The average speeds during the six lane changes and the 
average speeds during the driving for Risk-fused DDQN 
were faster than that for DDQN. At the moment the left 
lane change command was issued in scenarios 4–6, for 
Risk-fused DDQN, the distance between the ego-vehi-
cle and the front vehicle was larger, and the ego-vehicle 
speed was higher. The above comparison shows that 
Risk-fused DDQN can find the time to change lane in a 
timelier manner and avoid the speed reduction caused by 
the too short following distance. In addition, Risk-fused 
DDQN improved the time headway by at least 16.5%, 
compared with DDQN, though the headway in scenario 
5 for Risk-fused DDQN was slightly reduced (2.9%). Sce-
nario 4 is a scenario where the left vehicle passes quickly, 
so when the decision-making model issued the left lane 
change command, the left vehicle had already driven 
in front of the ego-vehicle and had become the front 
vehicle in the target lane. As can be seen from Table  8, 
Risk-fused DDQN issued the left lane change command 
when the speed of the front vehicle in the target lane was 
higher and the longitudinal distance from it was larger. In 
this way, the safety margin between the ego-vehicle and 
the front vehicle in the target lane was higher. Finally, at 
the moment the right lane change command was issued 
in scenarios 4 and 5, for Risk-fused DDQN, the longi-
tudinal distance from the rear vehicle in the target lane 
was larger, and the headway of the rear vehicle in the 
target lane was also larger. In this way, the safety margin 
between the ego-vehicle and the rear vehicle in the target 
lane was higher.

To sum up, the success rate of left lane change and 
right lane change for Risk-fused DDQN in the six scenar-
ios was 91.7%, but that for DDQN was 58.3%, improving 
57.3%. In addition, the average speed during the driv-
ing for Risk-fused DDQN was improved by 19.4%, com-
pared with DDQN. And when the lane change command 
was issued, the distances and time headways between 
the ego-vehicle and the front (or rear) vehicle in the 
current(or target) lane, were also larger, with the time 
headway improved at least by 16.5%, making the lane 
change decisions more secure.

5 � Conclusions
To address problems of poor security and low train-
ing efficiency in conventional reinforcement-learning-
based decision-making algorithms, this study proposes 
a risk assessment algorithm and constructs a reinforce-
ment learning algorithm called Risk-fused DDQN, which 
is based on DDQN and integrates a safety evaluation 
mechanism for lane change scenarios. Firstly, the safety 
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of behavioral decisions is judged on the basis of trajec-
tory prediction and risk assessment, and then the dan-
gerous actions are corrected, which effectively increases 
the average episode length in the training process. Apart 
from that, the algorithm sets a separate experience buffer 
for dangerous experiences for sampling and punishment, 
helping the agent to detect and record potential dangers 
before actual collisions. In both high-speed and low-
speed lane change scenarios, compared with DDQN, the 
proposed Risk-fused DDQN improves the convergence 
value of cumulated reward by 7.6% and 2.2%, respec-
tively, and reduces the number of episodes required for 
the reward function to reach the same value by 52.2% 
and 66.8%, respectively, verifying the higher training effi-
ciency of Risk-fused DDQN. In real vehicle tests, Risk-
fused DDQN improves the success rate of lane change 
by 57.3%, the average speed during the driving by 19.4%, 
the time headway by 16.5%, verifying the higher scenario 
adaptability and higher security of Risk-fused DDQN.
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